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Abstract
The timed concurrent language for argumentation (tcla) is a framework to model concurrent interactions between communi-
cating agents that reason and take decisions through argumentation processes, also taking into account the temporal duration
of the performed actions. Time is a crucial factor when dealing with dynamic environments in real-world applications, where
agents must act in a coordinated fashion to reach their own goals. However, modelling complex interactions and concurrent
processes may be challenging without the help of proper languages and tools. In this paper, we discuss the use of tcla for
practical purposes and provide a working implementation of the language, endowed with a user interface available online,
that serves the dual purpose of aiding the research in this field and facilitating the development of multi-agent systems based
applications.
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1 Introduction

Argumentation theory aims to study how conclusions can be reached starting from a set of
assumptions through a process of logical reasoning. This process is very similar to the human
way of thinking and involves features which can be traced to a form of dialogue between two (or
more) people. Abstract argumentation frameworks [20] (AFs) are used to study the acceptability
of arguments according to given selection criteria. Formalisms like timed abstract argumentation
frameworks (TAFs) [12, 15, 16] have been proposed to meet the need for including the notion of time
into argumentation processes. Time is an essential aspect of cooperative environments: in many ‘real-
life’ applications, the activities have a temporal duration (that can even be interrupted); furthermore,
the coordination of such activities has to consider this timeliness property. The interacting actors
are mutually inf luenced by their actions, meaning that agent A reacts accordingly to the timing and
quantitative aspects related to the behaviour of agent B and vice versa. Moreover, the information
brought forward by debating agents that interact in a dynamic environment can be affected by time
constraints, limiting, for instance, the inf luence of some arguments in the system to a specific
time-lapse. Therefore, a mechanism for handling time is required to better model the behaviour
of intelligent agents involved in argumentation processes.

This paper deals with the timed concurrent language for argumentation (tcla), a formalism able
to model dynamic interactions between agents by using notions from argumentation theory for
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reasoning about shared knowledge. In particular, we extend the work in [7–9] with the further
addition of three main contributions. First, we carefully discuss how to use tcla constructs for
modelling TAFs (extended AFs in which arguments are only available for given temporal intervals).
An example illustrates step-by-step the procedure to obtain the tcla translation of a TAF. Second,
we present a working implementation for tcla that enables users to write and execute tcla programs
through a web interface. The description of the implementation includes comments on the chosen
architecture and the functioning of the main components. Finally, we offer some practical examples
in which we use our system to construct solutions to real-world problems (such as resolving disputes
between opposing parties).

tcla is based on the hypothesis of bounded asynchrony [31]: any computation takes a bounded
period of time rather than being instantaneous as in the concurrent synchronous languages esterel
[5], lustre [22], signal [25] and Statecharts [23]. Time itself is measured by a discrete
global clock, i.e. the internal clock of the tcla process. In tcla, we directly introduce a timed
interpretation of the programming constructs by identifying a time-unit with the time needed for
the execution of a primary action (that can be an addition, removal or a check of arguments/attacks
or a semantical test of arguments) and by interpreting action prefixing (→) as the next-time operator.
Explicit timing primitives are also introduced to allow for the specification of timeouts. We consider
a paradigm in which parallel operations are expressed in terms of maximal parallelism. Following
this approach (also adopted in works like [6, 17, 31]), at each moment, every enabled agent of the
system is activated, so that the processor simultaneously executes all parallel threads. This is the
opposite of the interleaving paradigm, for which at each moment only one of the enabled agents is
executed instead.

The rest of this paper is organized as follows: in Section 2, we summarize essential background
notions and the frameworks from which tcla derives. In Section 3, we present tcla and the operational
semantics of its agents. Section 4 exemplifies the use of timed paradigms in tcla and shows an
application example of how a TAF can be dynamically instantiated, highlighting the relation between
tcla and TAFs. Section 5 describes and shows practical examples of a tool implementing tcla. In
Section 6, we discuss some related work. Finally, Section 7 concludes the paper by also indicating
future research lines.

2 Background

Argumentation theory aims to understand and model the natural human fashion of reasoning,
allowing one to deal with uncertainty in non-monotonic (defeasible) reasoning. In his seminal paper
[20], Dung defines the building blocks of abstract argumentation.

DEFINITION 2.1 (AFs).
Let U be the set of all available arguments1 , which we refer to as the ‘universe’. An abstract
argumentation framework is a pair 〈Arg, R〉 where Arg ⊆ U is a set of adopted arguments and R
is a binary relation on Arg, which denotes a set of attacks between arguments in Arg.

For a pair consisting of a set of arguments and a set of attacks, we define the associated AF as
follows.

1The set U is not present in the original definition by Dung and we introduce it for our convenience.
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DEFINITION 2.2 (Associated AF).
Let F= 〈Arg, R〉, where Arg and R are a set of arguments and a set of attacks, respectively. We define
the AF associated with F as F↓= 〈Arg, R′〉, where R′ = {(a, b) | (a, b) ∈ Arg × Arg and(a, b) ∈ R}
is obtained by projecting beforehand the set of attacks to couples of arguments in Arg.

By the previous definition, given a set of arguments Arg and a set of attacks R, 〈Arg, R〉 ↓ is an AF,
and we say that it is the AF associated with the pair 〈Arg, R〉. We will need the notion of associated
AF in the context of TAFs (where arguments are only available in specific time intervals) to obtain
an AF at each given instant. For two arguments a, b ∈ Arg, the notation (a, b) ∈ R represents an
attack directed from a against b. Given an AF, we define the sets of arguments that are attacked by
another argument or by a set of arguments as follows.

DEFINITION 2.3 (Attacks).
Let F = 〈Arg, R〉 be an AF, a ∈ Arg and S ⊆ Arg. We define the sets a+

F = {b ∈ Arg | (a, b) ∈ R}
and S+

F = ⋃
a∈S a+

F (we will omit the subscript F when it is clear from the context).

DEFINITION 2.4 (Acceptable argument).
Given an AF F = 〈Arg, R〉, an argument a ∈ Arg is acceptable with respect to D ⊆ Arg if and only
if ∀b ∈ Arg such that (b, a) ∈ R, ∃c ∈ D such that (c, b) ∈ R, and we say that a is defended from D.

Using the notion of defence as a criterion for distinguishing acceptable sets of arguments
(extensions) in the framework, one can further refine the set of selected ‘good’ arguments. The goal
is to establish acceptable arguments according to a certain semantics, namely a selection criterion.
Non-accepted arguments are rejected. Different kinds of semantics have been introduced [2, 20] that
ref lect qualities which are likely to be desirable. We first recall definitions for the extension-based
semantics [20], namely admissible, complete, stable, semi-stable, preferred and grounded semantics
(denoted with adm, com, stb, sst, prf and gde, respectively, and generically with σ ).

DEFINITION 2.5 (Extension-based semantics).
Let F = 〈Arg, R〉 be an AF. A set E ⊆ Arg is conflict-free in F, denoted E ∈ Scf (F), when there are
no a, b ∈ E such that (a, b) ∈ R. For E ∈ Scf (F), we have that

– E ∈ Sadm(F) when each a ∈ E is defended by E2 ;
– E ∈ Scom(F) when E ∈ Sadm(F) and ∀a ∈ Arg defended by E, a ∈ E;
– E ∈ Sstb(F) when ∀a ∈ Arg \ E, ∃b ∈ E such that (b, a) ∈ R;
– E ∈ Ssst(F) when E ∈ Scom(F) and E ∪ E+ is maximal (with respect to subset inclusion);
– E ∈ Sprf (F) when E ∈ Sadm(F) and E is maximal (with respect to subset inclusion);
– E ∈ Sgde(F) when E ∈ Scom(F) and E is minimal (with respect to subset inclusion).

Besides enumerating the extensions for a specific semantics σ , one of the most common tasks
performed on AFs is to decide whether an argument a is accepted in some extension of Sσ (F) or in
all extensions of Sσ (F). In the former case, we say that a is credulously accepted with respect to σ ;
in the latter, a is instead sceptically accepted with respect to σ .

2If E ∈ Sadm(F), we say that E is an admissible extension of F. Analogously for the other semantics.
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FIGURE 1. Example of an abstract argumentation framework.

EXAMPLE 2.6
In Figure 1, we provide an example of AF where sets of extensions are given for all the mentioned
semantics: Scf (F) = {{}, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}}, Sadm(F) = {{}, {a}, {c}, {d},
{a, c}, {a, d}}, Scom(F) = {{a}, {a, c}, {a, d}}, Sprf (F) = {{a, c}, {a, d}}, Sstb(F) = Ssst(F) = {{a, d}}
and Sgde(F) = {{a}}. In detail, the singleton {e} is not conflict-free because e attacks itself. The
argument b is not contained in any admissible extension because no other argument (included itself)
defends b from the attack of a. The empty set {}, and the singletons {c} and {d} are not complete
extensions because a, which is not attacked by any other argument, has to be contained in all
complete extensions. Only the maximal (with respect to set inclusion) admissible extensions {a, c}
and {a, d} are preferred, while the minimal complete {a} is the (unique) grounded extension. Then,
the arguments in the subset {a, d} that conduct attacks against all the other arguments (namely b, c
and e) represent a stable extension. To conclude the example, we want to point out that argument a
is sceptically accepted with respect to the complete semantics since it appears in all three subsets
of Scom(F). On the other hand, argument c, which is in just one complete extension, is credulously
accepted by the complete semantics.

Many of the semantics mentioned above (such as the admissible and the complete ones) exploit the
notion of defence to decide whether an argument is part of an extension. The phenomenon for which
an argument is accepted in some extension because it is defended by another argument belonging to
that extension is known as reinstatement [13]. In the same paper, Caminada also gives a definition
for reinstatement labelling.

DEFINITION 2.7 (Reinstatement labelling).
Let F = 〈Arg, R〉 be an AF and L = {in, out, undec}. A labelling of F is a total function L :
Arg → L. We define in(L) = {a ∈ Arg | L(a) = in}, out(L) = {a ∈ Arg | L(a) = out} and
undec(L) = {a ∈ Arg | L(a) = undec}. We say that L is a reinstatement labelling if and only if it
satisfies the following:

– ∀a ∈ Arg.a ∈ in(L) ⇐⇒ ∀b ∈ Arg | (b, a) ∈ R.b ∈ out(L);
– ∀a ∈ Arg.a ∈ out(L) ⇐⇒ ∃b ∈ Arg | (b, a) ∈ R ∧ b ∈ in(L).

In other words, an argument is labelled in if all its attackers are labelled out, and it is labelled out
if at least an in node attacks it. In all other cases, the argument is labelled undec. A labelling-based
semantics [2] associates a subset of all the possible labellings with an AF. In Figure 2, we show an
example of reinstatement labelling on an AF in which arguments a and c highlighted in green are in,
red ones (b and d) are outand the yellow argument e (that attacks itself) is undec.

Given a labelling L, it is possible to identify a correspondence with the extension-based semantics
[2]. In particular, the set of in arguments coincides with a complete extension, while other semantics
can be obtained through restrictions on the labelling as shown in Table 1.

The notion of time can be included in the reasoning model of AFs by considering temporal
intervals [16] defined as follows.
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FIGURE 2. Example of reinstatement labelling.

TABLE 1. Reinstatement labelling vs semantics.

Labelling restrictions Semantics

No restrictions Complete
Empty undec Stable
Minimal undec Semi-stable
Maximal in Preferred
Maximal out Preferred
Maximal undec Grounded
Minimal in Grounded
Minimal out Grounded

DEFINITION 2.8 (Temporal interval).
A temporal interval is a pair built from t1, t2 ∈ Z in one of the following ways:

– [t1, t1], denoting the moment t1;
– [t1, +∞), a set of moments formed by all the numbers in Z greater than or equal to t1;
– (−∞, t2], a set of moments formed by all the numbers in Z smaller than or equal to t2;
– [t1, t2], a set of moments formed by all the numbers in Z from t1 to t2 (both included);
– (−∞, +∞), denoting a set of moments formed by all the numbers in Z.

The set of all the intervals defined over Z ∪ {−∞, +∞} is denoted Υ .

In TAFs [15, 16], each argument is associated with temporal intervals that express the period of
time in which the argument is available.

DEFINITION 2.9 (TAFs).
A TAF is a tuple T = 〈Arg, R, Av〉 where Arg ⊆ U is a set of adopted arguments belonging to the
universe U , R3 is a binary relation on Arg and Av : Arg → ℘(Υ ) is the availability function for
timed arguments.

In the following, we denote by i ∈ I (I ∈ ℘(Υ )), possibly subscript, a generic temporal interval
(set of temporal intervals). More in detail, considering a temporal interval i and a time instant t, we
say that t ∈ i if one of the following holds:

– i = [t1, t2] and t1 ≤ t ≤ t2;
– i = [t1, +∞) and t1 ≤ t;
– i = (−∞, t2] and t ≤ t2;
– i = (−∞, +∞).

3Note that in certain time intervals, attacks could be defined between arguments not currently available in the TAF.
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FIGURE 3. Example of a TAF.

Moreover, given I ∈ ℘(Υ ), we say that t ∈ I if there exists i ∈ I such that t ∈ i.
We illustrate in Figure 3 an example of the behaviour of timed arguments taken from [16],

with availability function defined as Av(a) = {[10, 40], [60, 75]}, Av(b) = {[30, 50]}, Av(c) =
{[20, 40], [45, 55], [60, 70]}, Av(d) = {[47, 65]} and Av(e) = {(−∞, 44]}. Note that attacks in a
TAF never change but are only considered when the availability of both the attacker and the attacked
arguments overlaps (alternatively, we can consider attacks to blink together with the arguments they
connect). We can imagine the modifications at a given instant t taking place simultaneously as if
every argument of the TAF was handled (made available/not available) by a different agent. We use
the following notation.

DEFINITION 2.10 (Attacks starting from a set of arguments).
Let Arg and R be a set of arguments and a set of attacks, respectively, and let a be an argument. We
denote by R|Arg = {(a, b) ∈ R | a ∈ Arg} the set of attacks in R starting from the arguments in Arg,
R|a = R|{a} and by 〈Arg, R〉|a = 〈Arg′, R|Arg′ 〉, where Arg′ = Arg ∩ {a}.

Given a TAF and a time instant t, we define a pair whose components are the set of arguments
available at t and the set of attacks starting from it.

DEFINITION 2.11
Let T= 〈Arg, R, Av〉 be a TAF, and let t a time instant. We denote by α(T , t) the pair 〈Arg′, R|Arg′ 〉,
where Arg′ = {a ∈ Arg | t ∈ Av(a)}.

By the previous definition, α(T , t) ↓ is the AF associated with the TAF T, which is available
at the instant t. Given a semantics σ , the set of acceptable arguments in a TAF can be computed
with respect to a specific moment t by only considering arguments (and attacks) available at t. For
example, in the TAF of Figure 3, the singleton {b} is an admissible extension for t ∈ [41, 44], i.e.
when b itself is available and its attacker c is not.
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TABLE 2. tcla syntax.

P ::= C.A
C ::= p(x) :: A | C.C
A ::= success | failure | add(Arg, R) → A | rmv(Arg, R) → A | E | A‖A | ∃xA | p(x)
E ::= checkt(Arg, R) → A | c − testt(a, l, σ) → A | s − testt(a, l, σ) → A |

E + E | E +P E | E‖GE

3 tcla Syntax and Semantics

The syntax of our tcla is presented in Table 2, where, as usual, P, C, A and E denote a generic
process, a sequence of procedure declarations (or clauses), a generic agent and a generic guarded
agent, respectively. Moreover, t ∈ N. In Tables 3 and 4, then, we give the definitions for the transition
rules.

Communication between tcla agents is implemented via shared memory, similarly to cla [8] and
CC [32] and opposed to other languages (e.g., CSP [24] and CCS [28]) based on message passing. In
the following, we denote by E the class of guarded agents and by E0 the class of guarded agents such
that all outermost guards have t = 0 (note that a Boolean syntactic category could be introduced in
replacement of E0 to better handle guards and allow for finer distinctions). In a tcla process P = C.A,
A is the initial agent to be executed in the context of the set of declarations C.

The operational model of tcla processes can be formally described by a transition system T =
(Conf , −→), where we assume that each transition step takes exactly one time-unit. Configurations
(in) Conf are pairs consisting of a process and a framework F = 〈Arg, R〉 representing the common
knowledge base, where Arg is a set of arguments and R is a set of attacks. The transition relation
−→⊆ Conf × Conf is the least relation satisfying the rules in Tables 3 and 4, and it characterizes
the (temporal) evolution of the system. So, 〈A, F〉 −→ 〈A′, F′〉 means that, if at time t, we
have the process A and the framework F, then at time t + 1 we have the process A′ and the
framework F′.

In Tables 3 and 4, we have omitted the symmetric rules for the choice operator + and for the
two parallel composition operators ‖ and ‖G. Indeed, + is commutative, so E1 + E2 produces
the same result as (i.e. is congruent to) E2 + E1. The same is true for ‖ and ‖G. Note that +
‖ and ‖G are also associative. Moreover, success and failure are the identity and the absorbing
elements under the parallel composition ‖, respectively (namely, for each agent A, we have that
A‖success and A‖failure are the agents A and failure, respectively). The agents success and failure
represent a successful and a failed termination, respectively, so they may not make any further
transition.

Note that in the configurations set Conf , the framework F = 〈Arg, R〉 is not guaranteed to be an
AF since R may contain attacks between arguments not in Arg.

In the following, we will usually write a tcla process P = C.A as the corresponding agent A,
omitting C when not required by the context.

Suppose we have an agent A whose knowledge base is represented by a framework F = 〈Arg, R〉.
An add(Arg′, R′) action performed by the agent results in the addition of a set of arguments Arg′ ⊆ U
(where U is the universe) and a set of attacks R′ to the framework F. Note that if an add(Arg′, R′)
action is performed at time t, then the updated store will be visible only from time t + 1 onward
since an addition takes one time unit to be completed. When performing an addition, (possibly) new
arguments are taken from U \ Arg. We want to make clear that the tuple (Arg′, R′) is not an AF;
indeed, it is possible to have Arg′ = ∅ and R′ �= ∅. Moreover, the structure of the shared store after
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TABLE 3. tcla operational semantics (part 1/2).

〈add(Arg′, R′) → A, 〈Arg, R〉〉 −→ 〈A, 〈Arg ∪ Arg′, R ∪ R′〉〉 Ad

〈rmv(Arg′, R′) → A, 〈Arg, R〉〉 −→ 〈A, 〈Arg \ Arg′, R \ R′〉〉 Re

Arg′ ⊆ Arg ∧ R′ ⊆ R t > 0

〈checkt(Arg′, R′) → A, 〈Arg, R〉〉 −→ 〈A, 〈Arg, R〉〉 Ch (1)

Arg′ �⊆ Arg ∨ R′ �⊆ R t > 0

〈checkt(Arg′, R′) → A, 〈Arg, R〉〉 −→ 〈checkt−1(Arg′, R′) → A, 〈Arg, R〉〉 Ch (2)

〈check0(Arg′, R′) → A, F〉 −→ 〈failure, F〉 Ch (3)

∃L ∈ Sσ (〈Arg, R〉 ↓) | l = L(a) t > 0

〈c − testt(a, l, σ) → A, 〈Arg, R〉〉 −→ 〈A, 〈Arg, R〉〉 CT (1)

∀L ∈ Sσ (〈Arg, R〉 ↓).l �= L(a) t > 0

〈c − testt(a, l, σ) → A, 〈Arg, R〉〉 −→ 〈c − testt−1(a, l, σ) → A, 〈Arg, R〉〉 CT (2)

〈c − test0(a, l, σ) → A, F〉 −→ 〈failure, F〉 CT (3)

∀L ∈ Sσ (〈Arg, R〉 ↓).l = L(a) t > 0

〈s − testt(a, l, σ) → A, 〈Arg, R〉〉 −→ 〈A, 〈Arg, R〉〉 ST (1)

∃L ∈ Sσ (〈Arg, R〉 ↓) | l �= L(a) t > 0

〈s − testt(a, l, σ) → A, 〈Arg, R〉〉 −→ 〈s − testt−1(a, l, σ) → A, 〈Arg, R〉〉 ST (2)

〈s − test0(a, l, σ) −→ A, F〉 −→ 〈failure, F〉 ST (3)

〈E1, F〉 −→ 〈A1, F〉, E1 �∈ E0, A1 �∈ E
〈E1 +P E2, F〉 −→ 〈A1, F〉 If (1)

〈E1, F〉 −→ 〈E′
1, F〉, E1 �∈ E0, E′

1 ∈ E
〈E1 +P E2, F〉 −→ 〈E′

1 +P E2, F〉
E1 ∈ E0, 〈E2, F〉 −→ 〈A2, F〉

〈E1 +P E2, F〉 −→ 〈A2, F〉 If (2)

an add operation is not guaranteed to be an AF since attacks involving arguments in U \{Arg∪Args′}
can be added to R.

Intuitively, rmv(Arg′, R′) allows specifying arguments and attacks to be removed from the
knowledge base. The store is again not guaranteed to be an AF: after the removal of an argument,
possible attacks outgoing from and incoming to that argument are still maintained. Removing an
argument (or an attack) that does not exist in F will have no consequences.

The c − testt(a, l, σ) → A, s − testt(a, l, σ) → A and checkt(Arg, R) → A constructs are explicit
timing primitives that allow for the specification of timeouts. In fact, in timed applications often one
cannot wait indefinitely for an event. Thus, a timed language should allow us to specify that in case a
given time bound is exceeded (i.e. a timeout occurs), the wait is interrupted and an alternative action
is taken.
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TABLE 4. tcla operational semantics (part 2/2).

〈E1, F〉 −→ 〈A1, F〉, 〈E2, F〉 −→ 〈A2, F〉, E1, E2 �∈ E0, A1 �∈ E
〈E1‖GE2, F〉 −→ 〈A1‖A2, F〉 GP (1)

〈E1, F〉 −→ 〈E′
1, F〉, 〈E2, F〉 −→ 〈E′

2, F〉, E1, E2 �∈ E0, E′
1, E′

2 ∈ E
〈E1‖GE2, F〉 −→ 〈E′

1‖GE′
2, F〉 GP (2)

E1 ∈ E0, 〈E2, F〉 −→ 〈A2, F〉
〈E1‖GE2, F〉 −→ 〈A2, F〉 GP (3)

〈A1, F〉 −→ 〈A′
1, F′〉, 〈A2, F〉 −→ 〈A′

2, F′′〉
〈A1‖A2, F〉 −→ 〈A′

1‖A′
2, ∗(F, F′, F′′)〉 Pa

〈E1, F〉 −→ 〈A1, F〉, E1 �∈ E0, A1 �∈ E
〈E1 + E2, F〉 −→ 〈A1, F〉

E1 ∈ E0, 〈E2, F〉 −→ 〈A2, F〉
〈E1 + E2, F〉 −→ 〈A2, F〉 ND (1)

〈E1, F〉 −→ 〈E′
1, F〉, 〈E2, F〉 −→ 〈E′

2, F〉, E1, E2 �∈ E0, E′
1, E′

2 ∈ E
〈E1 + E2, F〉 −→ 〈E′

1 + E′
2, F〉 ND (2)

〈A[y/x], 〈Arg, R〉〉 −→ 〈A′, F′〉
〈∃xA, 〈Arg, R〉〉 −→ 〈A′, F′〉 with y ∈ U \ Arg HA

〈p(y), F〉 −→ 〈A[y/x], F〉 with p(x) :: A and x ∈ {a, l, σ , t} PC

The operator checkt(Arg′, R′) (rules Ch (1)–(3) in Table 3) realizes a timed construct and is used
to verify whether, in a given time interval, the specified arguments and attacks are contained in the
set of arguments and attacks of the knowledge base, without introducing any further change. If t > 0
and the check is positive, the guard succeeds and the agent checkt(Arg′, R′) → A behaves like A at
the next time instant (rule Ch (1)). If t > 0 but the check is not satisfied, then the control is repeated
at the next time instant, and the value of the counter t is decreased (rule Ch (2)). Axiom Ch (3)
shows that if the timeout is exceeded, i.e. the counter t has reached the value of 0, then the process
checkt(Arg′, R′) → A fails.

The rules for credulous tests CT (1)–(3) and sceptical tests ST (1)–(3) in Table 3 are similar to
rules Ch (1)–(3) described before. Observe that we have two distinct test operations, both requiring
the specification of an argument a ∈ Arg, a label l ∈ {in, out, undec}4 and a semantics σ ∈
{adm, com, stb, sst, prf , gde}. We know that 〈Arg, R〉 is not guaranteed to be an AF since R may
contain attacks between arguments not in Arg. Therefore, to execute a test operation, we project
beforehand the set of attacks to couples of arguments in Arg. Hence, c−testt(a, l, σ) succeeds if there
exists at least one extension of Sσ (〈Arg, R〉 ↓) whose corresponding labelling L is such that L(a) = l.
Similarly, s − testt(a, l, σ) succeeds if a is labelled l in all possible labellings L ∈ Sσ (〈Arg, R〉 ↓).

The operator +P (if (1)–(2) in Table 3) is left-associative and realizes an if-then-else construct: if
we have E1 +P E2 (with E1, E2 ∈ E) and the guards of E1 succeed, then E1 will be always chosen

4Other labelling semantics could be considered where undec arguments are further divided into ‘don’t know’ and ‘don’t
care’ [10].
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tcla with maximum parallelism 721

over E2, even if also the guards of E2 succeed. So, for E2 to be selected, it has to be the only one
such that its guards succeed and will be selected only after E1 fails. If the guards of E1 do not fail,
the execution can either move to any consequent agent A1 which does not belong to E or proceed
with E′

1 +P E2 ∈ E .
The guarded parallelism GP (1)–(3) in Table 4 is designed to allow all the operations for which

the guards in the inner expression are satisfied. In more detail, the guards of E1‖GE2 succeed
when either the guards of E1, E2, or both succeed, and all the operations that can be executed
are executed. This behaviour differs from classical parallelism (for which all the agents have to
succeed in order for the parallel agent to succeed) and from nondeterminism (that only selects one
branch).

The remaining operators are classical in concurrency. The rule parallelism Pa in Table 4
models the parallel composition operator in terms of maximal parallelism. By transition
rules, an agent in a parallel composition obtained through ‖ succeeds only if all the agents
succeed.

In general, the parallelism operator denotes the distributed execution of processes; therefore, it is
not possible to have a global view of the entire parallel composition. Each agent only has access to
the shared store and not the processes running in the other agents.

In our implementation of rule Pa, we use ∗(F, F′, F′′) := (F′ ∩ F′′) ∪ ((F′ ∪ F′′) \ F) to handle
parallel additions and removals of arguments5 . In particular, if an argument a is added and removed
at the same moment (e.g. through the process add({a}, {}) → success ‖ rmv({a}, {}) → success),
we have two possible outcomes: if a was not present in the knowledge base, then the add operation
gains priority over the rmv one, since a ∈ ((F′ ∪ F′′) \ F); on the other hand, when a was already in
the shared memory, we have that a �∈ ((F′ ∪ F′′) \ F) and a is removed.

Any agent composed through + (rules ND (1)-(2)) is chosen if its guards succeed.
The existential agent ∃xA in rule HA in Table 4 implements a notion of locality: the agent ∃xA

behaves like A, with the argument x considered as local to it, thus hiding the information on x
provided by the external environment. This is obtained by substituting argument x for argument
y, which we assume to be new, not in the framework 〈Arg, R〉 and not used by any other process.
Standard renaming techniques can be used to ensure this. Only the agent executing ∃x can read
the hidden variable x. This operator can be used, for instance, to introduce an argument a into
the knowledge base without the other agents knowing about it. If a attacks some other argument,
say b, processes in which a is not local can still ‘see’ that b is defeated just by executing a
credulous/sceptical test, but they can neither directly verify the existence of a nor attack it back.
Finally, the procedure call (rule PC) has a single parameter: an argument, a label among in, out and
undec, a semantics σ or an instant of time. The procedure call can be extended to allow more than
one parameter if necessary.

In rules HA and PC, A[x/y] denotes the process obtained from A by replacing variable x for
variable y.

Using the transition system described in (the rules in) Tables 3 and 4, we can now define our
notion of observables, which considers the traces, whose components are AFs, of successful or failed
terminating computations that the agent A can perform for each tcla process P = C.A.

5Union, intersection and difference between AFs are intended as the union, intersection and difference of their sets of
arguments and attacks, respectively.
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DEFINITION 3.1 (Observables for tcla).
Let P = C.A be a tcla process. We define

Oio(P) = {(F1 ↓) · · · (Fn ↓) · ss | 〈A, F1〉−→∗〈success, Fn〉} ∪
{(F1 ↓) · · · (Fn ↓) · ff | 〈A, F1〉−→∗〈failure, Fn〉},

where −→∗ is the ref lexive and transitive closure of −→.

4 Modelling TAFs

In the context of argumentation, the possibility to include time in the reasoning processes conducted
by intelligent agents allows for modelling dynamic behaviours, such as, for instance, the addition and
the removal of information at precise moments from a knowledge base. Agents using tcla constructs
and availability functions in TAFs regulate the existence of arguments in a similar way; in particular,
we can imagine each agent having control over an argument of the TAF. This result is shown by
providing an explicit translation from a TAF into a tcla process.

In the following, given I ∈ ℘(Υ ), I is ordered if there is no [t1, t2] ∈ I such that t2 < t1 and for
each i1, i2 ∈ I , we have that i1 and i2 are disjoint and non-consecutive. Moreover, I is positive if for
each i ∈ I , we have that i = (−∞, +∞) or i = [t, +∞) or i = [t, t′] or i = (−∞, t′] with t′ ≥ 0.
Without loss of generality, since we want define the translation of a TAF for positive time instants,
we consider only positive ordered sets of intervals. Moreover, given I �= ∅, we denote by

first(I) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−∞, +∞) if (−∞, +∞) ∈ I

(−∞, t] if (−∞, t] ∈ I

[t, +∞) if I = {[t, +∞)}
[t1, t2] otherwise,

where [t1, t2] ∈ I is such that for each i ∈ I \ [t1, t2], we have that i = [t′1, t′2] or i = [t′1, +∞), with
t2 < t′1. Finally, given an ordered set of intervals I �= ∅, we define continue(I) = I \ first(I).

To ease the translation, we use sleep(t) → A as a shortcut for{
A if t ≤ 0

check1({}, {}) → (sleep(t − 1) → A) otherwise.

The agent sleep(t) → A, with t > 0, executes the check operation for exactly t times and then the
agent A is executed. Practically, sleep(t) lets the agent A wait for t instants of time. When t ≤ 0, the
agent A is immediately executed.

Finally, we use add(Arg, R) and rmv(Arg, R) as shortcuts for add(Arg, R) → success and
rmv(Arg, R) → success, respectively.

DEFINITION 4.1 (Translation).
The translation of a TAF 〈{a1, . . . , an}, R, Av〉 is

T (〈{a1, . . . , an}, R, Av〉) = Tadd(a1, R|a1 , Av(a1))‖ · · · ‖Tadd(an, R|an , Av(an)),
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tcla with maximum parallelism 723

where

Tadd(a, R, S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

success if S = ∅ or

S = {(−∞, +∞)} or

S = {[t, +∞)} with t ≤ 0

Trmv(a, R, S) if there is (−∞, t] ∈ S

(sleep(tin − 1) → add({a}, R)) ‖
Trmv(a, R, S)) otherwise

and

Trmv(a, R, S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

success if S = {[t, +∞)}

(sleep(tfin) → rmv({a}, R)) ‖
Tadd(a, R, continue(S))) otherwise,

where we assume that first(S) = [tin, tfin] or first(S) = (−∞, tfin] if S �= ∅, S �= {(−∞, +∞)} and
S �= {[t, +∞)} with t ≤ 0.

EXAMPLE 4.2
To illustrate how the translation given above can be used to model a TAF, we consider a scenario
presented in [11], where an agent (a person called Anna) is looking for an apartment to rent. In
this example, we use the following arguments to model Anna’s reasoning about whether the chosen
apartment will be a good option for the next 12 months. The deriving TAF is depicted in Figure 4.

a: Anna should rent the apartment she found
b: the apartment seems to have humidity problems
c: the owner is committed to solving structural problems in the apartment
d: a nearby nightclub will open in May
e: laws valid until August forbid the opening of nightclubs in the area

By translation T , the availability of timed arguments for each time instant t ≥ 0 can be simulated
by a tcla process that modifies the store by adding and removing part of the underlying framework.
The TAF considered in this example can be modelled through a translation T (〈Arg, R, Av〉), with
Arg = {a, b, c, d, e}, R = {(b, a), (c, b), (d, a), (e, d)} and the availability function Av defined as
shown in Figure 4. In this example, the translation T executes five parallel TAdd , one for each
argument in Arg. The part of the translation in charge of handling argument a in our example is

TAdd(a, {}, {[1, 12]}) = sleep(0) → add({a}, {}) → success ‖
sleep(12) → rmv({a}, {}) → success.

For argument d we have, instead,

TAdd(d, {(d, a)}, {[5, 12]}) = sleep(4) → add({d}, {(d, a)}) → success ‖
sleep(12) → rmv({d}, {(d, a)}) → success.
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724 tcla with maximum parallelism

FIGURE 4. Example of a TAF. Time intervals are specified in months (we match 1 in January, 2 in
February, 5 in May and so on).

In practice, to emulate the behaviour of argument d, starting from the time instant t = 0, the process
sleeps for 4 instants of time (i.e. it executes four consecutive dummy check1({}, {}) operations), until
add({d}, {(d, a)}) is executed, so that at t = 5 the store will contain the argument d and the attack
from d towards a. At the same time, in a parallel branch, the process sleeps for 12 instants of time
and then executes rmv({d}, {}). This way, t = 12 is the last instant in which d is available in the store.
Note that the translation also considers open intervals with lower limit −∞ and upper limit +∞.

THEOREM 4.3
The translation T of a TAF T = 〈Arg, R, Av〉 produces a tcla process P such that, starting from the
store F0 = α(T , 0), at any instant of time t ≥ 0, the AF associated to the computed store by P is the
AF available at t in the original TAF T .

PROOF. Let us consider the TAF T = 〈Arg, R, Av〉, and let T its translation. We prove that
F0F1 · · · Fn · ss ∈ Oio(T ), where F0 = α(T , 0) if and only if for each t̃ ≥ 0,

α(T , t̃) ↓=
{

Ft̃ if t̃ ≤ n

Fn otherwise.

We prove that for each a ∈ Arg,

〈Tadd(a, R|a, Av(a)), α(T , 0)|a〉−→∗〈success, F′
m〉

if and only if m <= n and for each t̃ ≥ 0

α(T , t̃)|a = α(〈{a}, R|a, Av(a)〉, t̃) =
{

F′
t̃

if t̃ ≤ m

F′
m otherwise

Therefore, the proof is straightforward by definition of ‖.
The proof is by induction on the cardinality l of Av(a). In the following, let F̃0 = 〈∅, ∅〉, and let

F̃1 = 〈{a}, R|a〉.
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• l = 0) In this case, Av(a) = ∅ and Tadd(a, R|a, Av(a)) = success. By definition for each t̃ ≥ 0
α(T , t̃)|a = F̃0, m = 0, F′

0 = α(T , 0)|a = F̃0 and then the thesis.
• l > 0) We have the following possibilities.

e: Av(a) = {(−∞, +∞)} or Av(a) = {[t, +∞)}, with t ≤ 0.) In this case,
Tadd(a, R|a, Av(a)) = success. By definition for each t̃ ≥ 0 α(T , t̃)|a = F̃1, m = 0,
F′

0 = α(T , 0)|a = F̃1 and then the thesis.
e: Av(a) = {[t, +∞)}, with t > 0. By definition for each t̃ ≥ 0,

α(T , t̃)|a =
{

F̃0 if 0 ≤ t̃ < t

F̃1 otherwise

and

Tadd(a, R|a, Av(a)) = (sleep(t − 1) → add({a}, R|a))‖success

By definition, sleep(t−1) → add({a}, R|a) tries to execute the operation check t−1 times
starting from the time instant 0 and therefore at the instant t − 1 the action add({a}, R|a)
is executed. By previous observations, for each 0 ≤ t̃ < t, F′

t̃
= F̃0 and for each t̃ ≥ t,

F′
t̃
= F̃1 and then the thesis.

e: i = (−∞, t] = first(Av(a))) In this case,

α(T , t̃)|a =
{

F̃1 if 0 ≤ t̃ ≤ t

α(〈{a}, R|a, Av(a) \ i〉, t̃) otherwise

and

Tadd(a, R|a, Av(a)) = (sleep(t) → rmv({a}, R|a)) ‖ Tadd(a, R|a, Av(a) \ i).

By definition, sleep(t) → rmv({a}, R|a) tries to execute the operation check t times,
starting from the time instant 0, and therefore, analogously to the previous case, at the
instant t the action rmv({a}, R|a) is executed. Therefore,

〈sleep(t) → rmv({a}, R|a), F′
0〉−→∗〈rmv({a}, R|a), F′

t〉−→〈success, F̃0〉,

where for each 0 ≤ t̃ ≤ t, F′
t̃
= F̃1.

e: Moreover, let Av′(a) = Av(a) \ i. By inductive hypothesis and by definition of ‖,

〈Tadd(a, R|a, Av′(a)), α(T , 0)|a〉−→∗〈success, F′′
p 〉

if and only if p <= m and for each t̃ ≥ 0

α(〈{a}, R|a, Av′(a)〉, t̃) =
{

F′′
t̃

if t̃ ≤ p

F′′
p otherwise.

By definition of Av′(a), for each [t′, t′′] ∈ Av′(a) or [t′, +∞) ∈ Av′(a), we have that
t′ > t + 1. Therefore, for each 0 ≤ t̃ ≤ t + 1, F′′

t̃
= F̃0 and for each t̃ > t + 1, F′′

t̃
= F′

t̃
.

Now, the proof follows by definition of Av′(a) and ‖.
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TABLE 5. Implementation of tcla operations.

tcla syntax Implementation

add(Arg, R) add(Arg,R)
rmv(Arg, R) rmv(Arg,R)
checkt(Arg, R) check(t,Arg,R)
c − testt(a, l, σ) ctest(t,a,l,σ )
s − testt(a, l, σ) stest(t,a,l,σ )
E + · · · + E sum(E,...,E)
E‖G . . . ‖GE gpar(E,...,E)
E +P E (E)+P(E)

e: i = [t, t′] = first(Av(a)) with t′ ≥ 0) In this case,

α(T , t̃)|a =

⎧⎪⎨
⎪⎩

F̃0 if 0 ≤ t̃ < t

F̃1 if t ≤ t̃ ≤ t′

α(〈{a}, R|a, Av(a) \ i〉, t̃) otherwise

and

Tadd(a, R|a, Av(a)) = (sleep(t − 1) → add({a}, R|a)) ‖
(sleep(t′) → rmv({a}, R|a)) ‖
Tadd(a, R|a, Av(a) \ i).

Now, the proof is analogous to the previous case.
�

COROLLARY 4.4
Given a tcla process produced by a translation T of a TAF, the set of arguments in the store accepted
with respect to a semantics σ at a given instant of time t ≥ 0 (starting from the initial store F0 =
α(T , 0)) coincides with the set of extensions identified by σ at moment t on the original TAF.

5 tcla Simulator

We developed a working implementation for tcla. Some of the operations had their syntax translated
(see Table 5) to enable users to specify tcla programs manually.

As shown in Figure 5, the main components of our tool are (i) the ConArg solver, (ii) an engine
written in Python that works as an interpreter and (iii) a web interface (see Figure 7) exposing the
functionalities of the language. The web interface communicates with the Python engine, which in
turn serves a dual purpose: first, it reads the input programme and forwards it to ConArg for solving
the argumentation problems posed by the test operations of itshape tcla; then, once the result of the
execution has been processed, the Python engine returns it to the web interface where it is displayed
for the user’s convenience. Below, we describe each component, focusing on the implementation
choices made during the development of the tool.
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FIGURE 5. Components of the tcla architecture.

FIGURE 7. Example of a tcla program executed form the web interface.

5.1 ConArg suite

Based on constraint programming, ConArg6 consists of a suite of tools aimed at solving
argumentation-related problems, like computing the set of extensions of a given AFs or testing
the acceptability of a particular argument. In the tcla implementation, we use ConArg to realize
credulous and sceptical test operations. For example, the execution of ctest(t,{a},in,com)
generates a call to the ConArg solver to determine whether argument a is credulously accepted
with respect to the complete semantics. Note that the reference AFs used to solve the problem are
all those within the subsequent t time units. Therefore, the AF that is passed to ConArg is the one
that constitutes the shared memory at the instant the test operation is executed. The execution of a
sceptical test involves a similar procedure. To establish whether a given argument a is sceptically
accepted with respect to a semantics σ , ConArg verifies if every extension of σ contains a. Then,
the computational complexity of a sceptical test is the same as computing all extensions of σ .
Concerning the credulous test, ConArg looks for only one extension of σ containing a; although,
in the worst case, all extensions must still be calculated, making the computational complexity of a
credulous test equal to that of a sceptical test. Note that, although we decided to use ConArg as the
argumentation solver for the implementation discussed here, the tool’s architecture allows complete
generalization of the various components and thus the adoption of other solvers. ConArg is called
from the Python script described in the following.

5.2 The Python engine

The core of our implementation consists of a Python script that covers three fundamental tasks: it
serves as an interpreter for the tcla syntax, it executes programs taken in input, and it communicates

6ConArg website: http://conarg.dmi.unipg.it.
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728 tcla with maximum parallelism

FIGURE 6. Example of parse tree for a tcla program.

with the web interface. The interpreter is built using ANTLR7 , a parser generator for reading,
processing, executing and translating structured text. We start with a grammar file defining the
constructs in Table 2. Any source program, then, is parsed according to the grammar, and a parse
tree is generated. Nodes of this three correspond to syntactic elements of the grammar whose
behaviour is defined in a dedicated Python class. Visiting the parse three is equivalent to executing
the corresponding program. Figure 6 shows an example of a parse tree for the program below.

check(3,{a},{}) -> add({b},{(b,a)}) -> success ||
add({a},{}) -> success;

The parser. The root of a parse tree for tcla programs is always a visitPrg node, which calls
the visit on its children, collects the results and returns the final output. visitSuc and visitFlr are
leafs corresponding to terminal nodes of success and failure agents, respectively. visitAdd
and visitRmv implement add(Arg,R) and rmv(Arg,R) operations, respectively. They modify
the knowledge base by adding/removing part of the framework, always succeeding and continuing
on their children. Note that, for adding an attack (a, b), arguments a and b must be contained
in the shared memory when visitAdd is performed. The two arguments can be introduced in the
same step in which the attack between them is added. visitRmv also succeeds if the specified
arguments and attacks are not in the AF (in that case, the AF is left unchanged). Suppose the
same argument (or attack) is added and removed during the same step through a visitAdd and a

7ANTLR website: https://www.antlr.org.
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visitRmv executed in parallel. In that case, the resulting shared memory state is computed by the
∗ operator. visitChk checks if a given set of arguments and attacks belongs to the knowledge base
as per the check(t,Arg,R) operator. In case of success, the visit proceeds to the consequent
action. On the other hand, when the knowledge base does not contain the specified AF parts,
the timeout decreases, and the check is repeated. When the timeout reaches zero, visitChk fails.
visitTcr (ctest(t,{a},l,σ)) and visitTsk (stest(t,{a},l,σ)) call the ConArg solver to
credulously/sceptically test the acceptability of a given argument a, with respect to a semantics
σ . The functions repeat the verification until either the test succeeds or the timeout reaches zero.
In the latter case, both constructs return failure. A node visitNdt implements sum(E,...,E),
that is, a concatenation of + operators, inspecting the guards of all its children expressions and
randomly selecting one branch to execute among the possible ones. If no guards are found with
satisfiable conditions, all timeouts are decreased and the conditions are rechecked in the next step.
Expressions with expired timeouts are discarded, and if no expression can be executed before the
last timeout expires, the construct fails. visitIte behaves like the if-then-else construct (E)+P(E).
The expressions are handled in the same order in which they are specified. If the first succeeds,
visitIte succeeds without executing the second one. If the first expression fails, then the second one
is executed. If also the second expression fails, the construct fails. Parallel agents are implemented
through the use of threads. A node visitPar starts separated threads to execute parallel agents
composed through ‖, returning true if both succeed or false as soon as one action fails. visitGpa
implements gpar(E,...,E), namely a concatenation of ‖G operators. It cycles through its
children, starting a new thread for every expression found with a satisfiable guard. If all the executed
expressions succeed, the construct succeeds. If no expression can be executed, all timeouts are
decreased and expressions with expired timeouts are discarded. The process is repeated until all the
expressions have been executed or discarded for a timeout or when an expression terminates with
failure. Procedure calls are handled by visitPcl nodes. Beforehand, a procedure must be defined, at
the beginning of the program, with the construct def p(x1,,...,xn): A, where p is the name of
the procedure, x1, . . . , xn a set of optional parameters and A the body of the procedure containing the
action to execute. Variables in A are specified by the name of a parameter preceded by the $ symbol.
When the procedure is called inside the program, all variables in the body are instantiated with the
values given in the call, and agent A is executed. Consider, for instance, the following program.

def my_proc(x,y): check($y,{$x},{}) -> add({a},{}) -> success;
my_proc(b,4) -> success || add({b},{}) -> success;

It begins with defining the my_proc procedure, which takes x and y as parameters. Subsequently,
when my_proc(b, 4) is called, the variables in its body are instantiated, and check(4, {b}, {}) →
add({a}, {}) → success is executed.

Maximal parallelism. To obtain maximal parallelism for the operations, we synchronize the
threads that implement parallel agents by keeping track of time elapsing in each parallel branch of
the execution. We use a global counter, shared by all threads, to simulate clock cycles of a processor.
The counter is defined as a shared variable via the Python multiprocessing package and thus can
be safely managed by parallel threads without the risk of generating inconsistent data. At each step
(which corresponds to a clock cycle), one operation of each parallel agent is executed. The last thread
to execute an operation in the current step is in charge of increasing the clock counter, marking
the beginning of the subsequent cycle. Failed attempts of execution also consume a unit of time:
when the condition of a guarded agent is not satisfied, its timeout is decreased and the execution is
postponed by one step. To obtain such a behaviour, we rewrite the program’s parse tree so that each
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node representing a non-satisfiable guarded agent A is assigned a single child node that is a clone of
A, except for the timeout, which is decreased by one.

5.3 tcla web interface

The input program is provided to the Python script through a web interface (shown in Figure 7)
developed in HTML and JavaScript, which can be tested at the following link: https://conarg.dmi.
unipg.it/tcla-m. After the program has been executed, its output is also shown in the interface.

We have two main areas, one for the input and the other for the output. First, the user enters a
program in the dedicated text box (either manually or by selecting one of the provided examples),
after which there are two ways to proceed: by clicking on the ‘Run All’ button, the whole program is
executed at once, and the final result is displayed in the output area; alternatively, by clicking on the
‘Run 1 Step’ button, it is possible to monitor the execution step by step. The interface communicates
with the underlying Python engine through an Ajax call which passes the program as a parameter and
asynchronously retrieves the output. After the execution of (a step of) the program, three different
components are simultaneously visualized in the output area: the program output, the state of the
shared memory and a timeline representing the availability of arguments over time. The program
output box shows the results of the execution, divided by steps. The beginning of each step is marked
by a separating line explicitly showing the step number (i.e. the elapsed time in terms of clock
cycles). The shared memory box is updated after each execution step and shows the AF used as the
knowledge base. Finally, the bottom-right box contains the visual representation of timed arguments
(which resembles the illustration of a TAF provided in Figure 3) and shows the temporal evolution
of the AF used by the tcla program. Time is reported on the x axis, and each bar of the timeline
shows the intervals of time during which an argument is contained in the shared memory, miming
the availability functions of arguments in a TAF.

5.4 Execution examples

We now illustrate two examples showing the execution of tcla programs obtained as translations of
TAFs. Each of the used TAFs represents, in its turn, a dialogue between different counterparts that
disagree on a certain choice.

EXAMPLE 5.1
Consider the TAF whose arguments and attacks are represented in Figure 8 and with availability of
timed arguments Av(a) = Av(b) = {(−∞, +∞)}, Av(c) = {(−∞, 3]} and Av(d) = {[2, +∞)}. In
this case, time instants represent days, with t = 0 meaning ‘today’. Such a TAF can be seen as an
abstract formalization of the dialogue between Mark and Lisa, who want to decide what to do during
the Christmas holidays. Four arguments are presented in the discussion, as listed below, two of which
have limited time availability.

a : Mark wants to watch a movie at the cinema
b : Lisa wants to take advantage of the sales and go shopping
c : sales have yet to start and will not be available for the next three days
d : the movie Mark wants to watch will be dropped from the schedule in two days

We use the translation of Definition 4.1 to generate a tcla program corresponding to the considered
TAF. Arguments a, b and c are available since the beginning; hence, they will be immediately added
in parallel into the shared memory. For conciseness and consistency, our translation function will put
a sleep(0) before the add operation. The system will ignore this sleep operation, and the subsequent
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FIGURE 8. Arguments and attacks of the TAF used in Example 5.1.

FIGURE 9. The program of Example 5.1 executed form the web interface.

action (in this case, the addition) will be executed in the same time instant. Argument c is only
available in the interval (−∞, 3], and so it needs to be removed three instants after being added.
This results in a remove operation on the argument c after a sleep(3). Finally, argument d, available
only after two instants of time, is added in the last parallel branch of the program after a sleep(2)

operation. The complete program returned by the translation is reported below.

sleep(0) -> add({a},{(a,b)}) -> success ||
sleep(0) -> add({b},{(b,a)}) -> success ||
sleep(0) -> add({c},{(c,b)}) -> success ||
sleep(3) -> rmv({c},{(c,b)}) -> success ||
sleep(2) -> add({d},{(d,a)}) -> success;

We can now run this program by passing it as input into our tool. Figure 9 shows the web
interface at the end of the execution. In detail, the output panel reveals that the execution successfully
terminated at time t = 4, while on the right side of the interface, we can see the contents of the shared
memory at the end of execution and the availability of the various arguments during runtime. Since
the arguments a, b and d remain available forever after being added (until t = +∞), they are not
removed from the shared memory at the end of execution. From the program output, we can also see
how sleep shortcuts are translated into a sequence of check operations when the program is executed
(like in lines 13, 15 and 20 of Figure 9).

One possible use of tcla concerns the evaluation of the acceptability status of arguments at a given
instant of time. For example, starting with the program under consideration, we can add in parallel
the process sleep(1) → ctest(1, {b}, in, complete) → success to check whether the argument b is
contained in some complete extension at time instant t = 1. In our case, the test fails, meaning that
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FIGURE 10. Arguments and attacks of the TAF used in Example 5.2.

going shopping one day after ‘today’ to take advantage of the sales is not a valid option. On the
other hand, running sleep(1) → ctest(1, {a}, in, complete) → success, one can verify that the test
succeeds. The situation is reversed when t = 3, for which b is accepted and a rejected according
to the credulous test for the complete semantics. In practice, a possible logical conclusion to the
dispute between Lisa and Mark could be reached by going to the cinema tomorrow and shopping in
three days.

In the next example, we show the functioning of arguments with intermittent availability, which are
added into and removed from the shared memory multiple times. This particular kind of argument
can model situations where a given event occurs periodically, or a claim is reinstated under specific
conditions.

EXAMPLE 5.2
Paul was planning to go to the swimming pool the next week. However, some factors limit the
availability of the facility as schematized in the TAF of Figure 10, where the three arguments a, b
and c have the following meanings.

a : Paul wants to go swimming next week
b : there will be competitions on Monday and Friday, and no free swimming hours are scheduled

for those days
c : the swimming pool will be closed every other day due to maintenance work for the next week

We associate integers from 0 to 6 with the various days of the week. 0 corresponds to Sunday,
1 to Monday and so on, until 6 which represents Saturday. Setting the start of the week on
Monday, the availability function of our TAF is Av(a) = {[1, 6]}, Av(b) = {[1, 1], [5, 5]} and
Av(c) = {[2, 2], [4, 4], [6, 6]}. The translation of the given TAF produces a tcla program where a
is added and removed only once, while b and c are repeatedly withdrawn and put back into the
shared memory. We add one last operation to evaluate the acceptability of argument a and answer
the question ‘When is the first suitable day for Paul to go to the pool?’ Therefore, the program we
want to execute is as follows.

sleep(0) -> add({a},{}) -> success ||
sleep(6) -> rmv({a},{}) -> success ||
sleep(0) -> add({b},{(b,a)}) -> success ||
sleep(1) -> rmv({b},{(b,a)}) -> success ||
sleep(4) -> add({b},{(b,a)}) -> success ||
sleep(5) -> rmv({b},{(b,a)}) -> success ||
sleep(1) -> add({c},{(c,a)}) -> success ||
sleep(2) -> rmv({c},{(c,a)}) -> success ||
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FIGURE 11. The program of Example 5.2 executed form the web interface.

sleep(3) -> add({c},{(c,a)}) -> success ||
sleep(4) -> rmv({c},{(c,a)}) -> success ||
sleep(5) -> add({c},{(c,a)}) -> success ||
sleep(6) -> rmv({c},{(c,a)}) -> success ||
ctest(6,{a},in,complete) -> success;

We see in Figure 11 the produced output, together with the status of the shared memory (which is
empty since all arguments are removed by the end of the execution) and a graphical representation
of the availability function. The rightmost panel contains the answer to our question: the credulous
test on argument a (we use complete semantics again for illustrative purposes) succeeds on line 73
during the third step; thus, t = 3, i.e. Wednesday, is the first day the pool allows free swimming and
is a good day for Paul to go.

6 Related Work

Due to their dynamic nature, AFs are often used to model the interaction between debating
counterparts, especially in those situations where shared information is subject to changes in
structure and acceptability status. As (t)cla is the first concurrent language that uses argumentation-
based operations to realize interactions in multi-agent systems, there are no other simulator
implementations that can be compared with ours. Therefore, in this section, we discuss relevant
works in the literature that use argumentation to provide theoretical foundations and deliver
applications in the context of dynamic agent interaction.

A formalism for expressing dynamics in AFs is defined in [30] as a dynamic argumentation
framework (DAF), structures consisting of AF with attached a set of evidence, which has the role of
restricting the possible arguments and attacks. This approach allows for generalizing AFs by adding
the possibility of modelling changes, although the justification status of arguments is not considered
in the process. Focusing on the mere addition of arguments and attacks, [3] shows under which
conditions a set of arguments can be enforced (to become accepted) for specific semantics. The
authors also investigate whether such modifications behave in a monotonic fashion, thus preserving
the status of all initially accepted arguments. Similar kinds of frameworks have also been studied
from the point of view of dynamics in works like [14, 29], where the authors investigate the
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consequences brought by modifications on AFs. Differently from our study, the works mentioned
above do not consider the role of time in performing changes to knowledge basis and therefore are
not suitable to model the behaviour of concurrent agents.

It is reasonable to assume that the interactions between interacting entities (being them people or
synthetic agents) are regulated by the passing of time [26, 27]. Timed abstract dialectical frameworks
(tADFs) are introduced in [4] to cope with acceptance conditions changing over time. However,
unlike TAFs, which extend classical AFs with the notion of time intervals, tADFs use generic
statements that subsume arguments and relations (not only including attacks but also, for instance,
supports). Therefore, tADFs are not suitable for being modelled through tcla processes, which,
instead, rely on AFs.

A logical language for handling dynamics in AFs is presented in [19], where arguments and
attacks are represented by means of propositional variables, and acceptability criteria for arguments
are defined through logical formulas. Furthermore, dynamic evolution is modelled by changing the
truth values of variables expressed in the dynamic logic of propositional assignments [1]. Two kinds
of modifications can be performed in the framework: adding/removing attacks and changing the
extensions set according to the desired outcome. At the same time, a straightforward mechanism for
dealing with the addition (and deletion) of arguments is not implemented.

The revision of agents’ beliefs is studied in [21], where the authors provide a language for
representing beliefs as defeasible logic programs. A reasoning mechanism serves the purpose of
changing the belief state of the agents: as new data are acquired, a set of rules revise the knowledge
base by either incorporating or rejecting the new information. However, no proposal is made about
handling possible conflicts between agents that could arise in the case of concurrency.

YALLA is an agent-based language for argumentation proposed in [18]. Similarly to the work
in [19], it can be used to represent AFs, characterize extensions and modify the framework.
The major difference with our language lies in the fact that, since YALLA does not consider
concurrency between processes, all the operations are done sequentially, as if the agents were
taking turns.

The work presented here extends three previous papers [7–9] that we discuss below. First, [8]
introduces syntax and semantics of the concurrent language for argumentation (cla) on which tcla
is also based. An implementation of cla is then given in [9]. Both cla and tcla share the same
fundamental operations and allow intelligent agents to interact through an argumentation-based
reasoning engine. However, cla does not include a notion of time, which is the prerogative of tcla’s
constructs. Concerning [7], it introduces tcla (specifically, with maximum parallelism for parallel
operations) and comments on the possibility of handling TAFs. The extension we provide here
includes a detailed discussion of TAFs modelling and the implementation of tcla.

7 Conclusion and Future Work

In this paper, we discussed the practical aspects of using tcla, a concurrent language based on
maximum parallelism that realizes the simultaneous execution of actions by parallel agents. We
showed that the constructs of our language can be used to model TAFs. The transformation in tcla
was formally presented and exemplified with TAF instances taken from the real world. We also
presented an implementation of the language available online via a dedicated interface.

In future work, we would like to study time-dependent notions of acceptability. For example, we
could introduce operators to check if a given argument is acceptable in all (or some) instants of time.
Quantitative temporal operators could be defined to check acceptability only in given intervals. More
complex dynamics could also be considered: for instance, an argument could be made available only
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if specific conditions are met, and agents could be given priorities in introducing arguments for
specific time intervals.
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